UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

INTEL CORPORATION,
Petitioner,

v.

QUALCOMM INCORPORATED,
Patent Owner.

Case IPR2018-01326
Patent 9,608,675 B2

WORMMEESTER, Administrative Patent Judge.

DECISION
Institution of Inter Partes Review
35 U.S.C. § 314
I. INTRODUCTION

Intel Corporation1 ("Petitioner") filed a Petition (Paper 2, "Pet.") requesting inter partes review of claims 1–6 and 18–22 of U.S. Patent No. 9,608,675 B2 (Ex. 1001, “the ’675 patent”). Qualcomm Incorporated ("Patent Owner") filed a Preliminary Response (Paper 7, “Prelim. Resp.”). We have jurisdiction under 35 U.S.C. § 314 and 37 C.F.R. § 42.4(a). Under 35 U.S.C. § 314(a), an inter partes review may not be instituted “unless . . . there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition.” For the reasons that follow, we institute an inter partes review as to all the challenged claims of the ’675 patent and the sole ground presented.

II. BACKGROUND

A. Related Proceedings

The parties identify a district court case in the Southern District of California in which Patent Owner has asserted the ’675 patent against Apple. Pet. 2; Paper 5, 2. The parties also identify five other petitions for inter partes review involving the ’675 patent that Petitioner has filed. Pet. 2; Paper 5, 2. In addition, Petitioner identifies an International Trade Commission ("ITC") investigation in which Patent Owner asserted the ’675 patent against Apple, but has since withdrawn that assertion. Pet. 1–2.

1 Intel Corporation identifies itself and Apple Inc. ("Apple") as real parties in interest. Paper 2, 1.
B. The '675 Patent

The '675 patent describes power tracking for generating a power supply voltage for a circuit, such as an amplifier, that processes multiple transmit signals sent simultaneously. Ex. 1001, 1:8–10, 35–38. Figure 5, which is reproduced below, illustrates a transmit module with power tracking for all transmit signals according to the '675 patent. *Id.* at 1:65–67.

![Figure 5](image)

In particular, Figure 5 shows transmit module 500, which includes K transmit circuits 540a to 540k that can simultaneously process K transmit signals, with each transmit circuit processing one transmit signal. *Id.* at 6:34–37. Transmit module 500 also includes summer 552, power amplifier (PA) 560, duplexer 570, and power tracking supply generator (or voltage generator) 580. *Id.* at 6:37–39.
Inphase (I) and quadrature (Q) samples for a transmit signal are provided to both a transmit circuit and voltage generator 580. *Id.* at 6:42–44. For example, transmit circuit 540a receives I₁ and Q₁ samples for a first transmit signal and generates a first upconverted radio frequency (“RF”) signal for the first transmit signal. *Id.* at 6:40–42. Within transmit circuit 540a, the I₁ and Q₁ samples are converted to I and Q analog signals by digital-to-analog converters (DACs) 542a and 543a. *Id.* at 6:44–46. The I and Q analog signals are then filtered by lowpass filters 544a and 545a, amplified by amplifiers 546a and 547a, upconverted from baseband to RF by mixers 548a and 549a, and summed by summer 550a to generate the first upconverted RF signal. *Id.* at 6:46–50.

The other transmit circuits operate similarly. *Id.* at 6:54–57. Summer 552 receives all the upconverted RF signals from the transmit circuits, sums the upconverted RF signals, and provides a modulated RF signal to PA 560. *Id.* at 6:59–62.

Within voltage generator 580, power tracker 582 receives I₁ to Iₖ samples and Q₁ to Qₖ samples for all transmit signals being sent simultaneously. *Id.* at 6:63–65. Power tracker 582 computes the overall power of all the transmit signals based on the I and Q samples and provides a digital power tracking signal to DAC 584. *Id.* at 6:65–7:1. DAC 584 converts the digital power tracking signal to analog and provides an analog power tracking signal for all the transmit signals to power supply generator 586. *Id.* at 7:1–4, Fig. 5. Power supply generator 586 then generates a power supply voltage for PA 560. *Id.* at 7:6–8.

Once PA 560 receives both the modulated RF signal from summer 552 and the power supply voltage from power supply
generator 586, PA 560 amplifies the modulated RF signal using the power supply voltage. *Id.* at 7:8–11. PA 560 then provides an output RF signal for all the transmit signals being sent simultaneously. *Id.* at 7:11–12. The output RF signal is routed through duplexer 570 and transmitted via antenna 590. *Id.* at 7:12–14.

C. Illustrative Claim

Petitioner challenges claims 1–6 and 18–22 of the ’675 patent. Claims 1 and 18 are independent. Claim 1 is illustrative of the claims under challenge:

1. An apparatus comprising:

 a power tracker configured to determine a single power tracking signal based on a plurality of inphase (I) and quadrature (Q) components of a plurality of carrier aggregated transmit signals being sent simultaneously, wherein the power tracker receives the plurality of I and Q components corresponding to the plurality of carrier aggregated transmit signals and generates the single power tracking signal based on a combination of the plurality of I and Q components, wherein the plurality of carrier aggregated transmit signals comprise Orthogonal Frequency Division Multiplexing (OFDM) or Single Carrier Frequency Division Multiple Access (SC-FDMA) signals;

 a power supply generator configured to generate a single power supply voltage based on the single power tracking signal; and

 a power amplifier configured to receive the single power supply voltage and the plurality of carrier aggregated transmit signals being sent simultaneously to produce a single output radio frequency (RF) signal.
D. Asserted Ground of Unpatentability

Petitioner challenges claims 1–6 and 18–22 of the ’675 patent on one ground only: obviousness under 35 U.S.C. § 103 over Yu2 and Wang.3 Pet. 35–75. In support of its arguments, Petitioner relies on a Declaration of David Choi, Ph.D. (Exhibit 1003). See id.

III. DISCUSSION

A. Multiple Petitions

Patent Owner contends that we should exercise our discretion under 35 U.S.C. § 314(a) to deny institution of an inter partes review because Petitioner attempts to “sidestep” the Supreme Court’s mandate in SAS Institute, Inc. v. Iancu, 138 S. Ct. 1348 (2018), by filing six petitions against the same patent. Prelim. Resp. 13–16. In SAS, the Supreme Court held that a decision to institute under 35 U.S.C. § 314 may not institute on fewer than all claims challenged in the petition. 138 S. Ct. at 1358. Patent Owner asserts that the Board, however, has “cautioned that the presence of weak grounds in a petition could result in a complete denial of institution even if other unpatentability allegations met the threshold for institution.” Prelim. Resp. 14. As such, Patent Owner further asserts that Petitioner “has divided its challenges to the ’675 patent claims that would normally fit into one or two petitions (i.e., two grounds challenging 31 claims) across six petitions, hoping to increase its odds of institution.” Id. Patent Owner additionally

asserts that “Petitioner provides no explanation for its convoluted filing strategy and why it requires 84,000 words (6 \times 14,000) to make its case that 31 claims of the ’675 patent are unpatentable based on two grounds.” Id. at 16 (citing Alere Inc. v. Rembrandt Diagnostics, LP, Case IPR2017-01130, slip op. at 10 (PTAB Sept. 28, 2017) (Paper 10)); see also id. at 19 (“The present petition just meets 37 C.F.R. § 42.24(a)(1)(i)’s 14,000 word limit, purporting to contain 13,921 words.”). According to Patent Owner, “such tactics unnecessarily multiply the amount of material that the Board and patent owner must traverse to assess the patentability of the ’675 patent claims.” Id. at 15.

We disagree with Patent Owner. There is nothing inherently improper with filing multiple petitions at the same time to avoid issues associated with the word limit. Petitioner’s practice as described by Patent Owner is expressly permitted by the Board, which previously has provided guidance that petitioners should consider filing multiple petitions if concerned with exceeding word limits. See Rules of Practice for Trials Before the Patent Trial and Appeal Board and Judicial Review of Patent Trial and Appeal Board Decisions, 77 Fed. Reg. 48,612, 48,635 (Aug. 14, 2012) (“Where a petitioner can demonstrate how a waiver of the page limit is in the interests of justice, a motion to waive the page limit should be considered. Alternatively, the filing of multiple petitions directed to subsets of related claims should be considered.”). On this record, we find no reason to deny institution based on Petitioner’s multiple filings.
B. Word Limit

Patent Owner also contends that we should deny the Petition for facilitating word limit violations in the five other aforementioned related cases. Prelim. Resp. 20. According to Patent Owner, “significant-length portions of [this] petition are . . . incorporated by reference into each of the other five petitions challenging claims of the ’675 patent filed by this petitioner,” thereby “bring[ing] each of the other five petitions in this set thousands of words beyond the 14,000 word limit.” Id. at 19–20. Patent Owner characterizes these instances of incorporation by reference as “abusive tactics.” Id. at 20.

We disagree. As Patent Owner acknowledges, our rules specify that “[a]rguments must not be incorporated by reference from one document into another document,” and that “combined documents are not permitted.” Prelim. Resp. 20; 37 C.F.R. § 42.6(a)(3). Patent Owner does not allege or show that the instant Petition incorporates arguments by reference from another document. Nor does Patent Owner allege or show that Petitioner has combined the instant Petition with another document. Indeed, Patent Owner asserts that “the present petition appears to be permissible under the Board’s petition length rules.” Prelim. Resp. 3. Accordingly, based on the record before us, we find that Petitioner has not violated our rules regarding word limits or incorporation by reference in this case.

C. Claim Interpretation

The claim construction standard applicable to this inter partes review proceeding is the broadest reasonable interpretation in light of the patent specification. See 37 C.F.R. § 42.100(b) (2017); Cuozzo Speed Techs. LLC
v. Lee, 136 S. Ct. 2131, 2144–46 (2016) (upholding the use of the broadest reasonable interpretation standard). Under this standard, claim terms generally are given their ordinary and customary meaning, as would be understood by one of ordinary skill in the art in the context of the entire disclosure. See In re Translogic Tech., Inc., 504 F.3d 1249, 1257 (Fed. Cir. 2007).

Petitioner provides proposed interpretations of the claim terms “plurality of carrier aggregated transmit signals,” “power tracker,” and “single power tracking signal.” Pet. 32–33. Patent Owner responds that “procedural defects in the petition warrant its denial,” and “[t]hose defects can be ascertained without particular construction of any terms of the ’675 patent.” Prelim. Resp. 13. In light of the parties’ arguments and evidence, we provide further discussion of the claim term “power tracker.”

1. Satisfying 37 C.F.R. § 42.104(b)(3)

Petitioner indicates that Apple (a real party in interest in this proceeding) has argued in a related ITC investigation that the recited “power tracker” is a means-plus-function limitation lacking sufficient corresponding structure. Pet. 33 n.4. Although Petitioner asserts that the challenged claims are invalid for indefiniteness under Apple’s proposed means-plus-function

4 The revised claim construction standard for interpreting claims in inter partes review proceedings as set forth in the final rule published October 11, 2018, does not apply to this proceeding because the new “rule is effective on November 13, 2018 and applies to all IPR, PGR and CBM petitions filed on or after the effective date.” Changes to the Claim Construction Standard for Interpreting Claims in Trial Proceedings Before the Patent Trial and Appeal Board, 83 Fed. Reg. 51,340 (Oct. 11, 2018) (to be codified at 37 C.F.R. pt. 42).
construction, Petitioner directs us to the construction of “power tracker” determined by the Administrative Law Judge (“ALJ”) in the ITC investigation: “component in a voltage generator that computes the power requirement.” *Id.* at 32 (citing Ex. 1018, 18–20), 33 n.4. According to Petitioner, its “Petition shows the invalidity of the challenged claims under the ALJ’s construction,” as “indefiniteness is not an issue that can be considered in an [*inter partes* review proceeding].” *Id.*

In response, Patent Owner contends that we should deny the Petition because our “rules ‘require a petition to identify, not only how the challenged claim is to be construed but also how the construed claim is unpatentable’ under ‘a claim construction that it consider[s] to be correct.’” Prelim. Resp. 18 (quoting *Hologic, Inc. v. Enzo Life Sciences, Inc.*, Case IPR2018-00019, slip op. at 8–9 (PTAB Apr. 18, 2018) (Paper 17)); see 37 C.F.R. § 42.104(b)(3) (a petitioner must identify “[h]ow the challenged claim is to be construed”). According to Patent Owner, “[i]n this case, petitioner believes that the term ‘power tracker’ is a means-plus-function term,” but “advocates a different claim construction (*i.e.*, a non-[means-plus-function] claim construction).” Prelim. Resp. 18. Patent Owner also contends that, “[d]espite believing that ‘power tracker’ should be construed as a [means-plus-function] term, petitioner did not comply with 37 C.F.R. § 42.104(b)(3)[,] thereby providing another basis for denial of the petition.” *Id.* at 19; see 37 C.F.R. § 42.104(b)(3) (“Where the claim to be construed contains a means-plus-function or step-plus-function limitation . . . , the [petitioner’s] construction of the claim must identify the specific portions of the specification that describe the structure, material, or acts corresponding to each claimed function.”).
We disagree with Patent Owner. A petitioner may satisfy 37 C.F.R. § 42.104(b)(3) “by identifying claim constructions it proposes as the basis for requesting review of the challenged claims,” without “express[ing] its subjective agreement regarding correctness of its proffered claim constructions or [] tak[ing] ownership of those constructions.” Hologic, Inc. v. Enzo Life Sciences, Inc., Case IPR2018-00019, slip op. at 5 (PTAB Nov. 28, 2018) (Paper 21)\(^5\) (quoting Western Digital Corp. v. SPEX Techs., Inc., Case IPR2018-00084, slip op. at 11 (PTAB Apr. 25, 2018) (Paper 14)).

In an *inter partes* review where the broadest reasonable interpretation applies, a petitioner may proffer a construction that the patent owner advocated in a different forum and may state that it disagrees that the construction is correct under the standard applied in the other forum but that it proposes the construction as the broadest reasonable interpretation of the term in question. *Id.* at 5, 8. Additionally, in a broadest reasonable interpretation case, a petitioner may argue that a claim is indefinite but still offer a construction for the claim. *Id.* at 5, 7. If a petitioner is concerned that the Board may not adopt what it believes to be the proper claim construction, the petitioner may offer alternative constructions and demonstrate unpatentability under each construction. *Id.* at 6.

As discussed above, we apply the broadest reasonable interpretation in this proceeding. By contrast, the ALJ in the related ITC investigation applied the *Phillips* standard. Ex. 1018, 3–5 (ITC claim construction order); *see also* Pet. 32–33 (“The ALJ’s construction was based on the *Phillips* standard.”). Here, Petitioner offers a construction for the claim term “power

\(^5\) This decision denied the motion for rehearing of the *Hologic* decision cited by Patent Owner.
tracker,” namely, the ALJ’s construction in the ITC investigation, and expresses its belief that the challenged claims of the ‘675 patent are “also” invalid for indefiniteness under Apple’s proposed means-plus-function construction of the term. Pet. 32–33, 33 n.4. We find this approach to be acceptable under 37 C.F.R. § 42.104(b)(3). This is not a situation like that presented in Hologic, where the Phillips standard was being applied and the petitioner offered constructions with which it expressly disagreed. See Hologic, slip op. at 7 (Paper 21).

2. Request for Proposed Constructions of “power tracker”

As discussed above, Patent Owner does not address the construction of “power tracker.” At this stage of the proceeding, we have not reached a final decision regarding whether “power tracker” is a means-plus-function limitation under section 112, sixth paragraph, which requires identification of sufficient structure, material, or acts in the specification. See In re Donaldson Co., 16 F.3d 1189, 1193 (Fed. Cir. 1994) (en banc). We are able to analyze Petitioner’s asserted prior art ground for purposes of this Decision, however, without making such a determination. For purposes of this Decision, we adopt the ALJ’s construction in the ITC investigation and construe “power tracker” to mean “component in a voltage generator that computes the power requirement.” See Ex. 1018, 20. The preliminary evidence in favor of this construction passes the threshold sufficient to institute an inter partes review.

The parties are directed to address specifically in their subsequent briefing in this proceeding whether the recited “power tracker” invokes 35 U.S.C. § 112 ¶ 6. If it does invoke 35 U.S.C. § 112 ¶ 6, the parties are
directed to identify the corresponding structure from the specification of the ’675 patent. See 37 C.F.R. 42.104(b)(3). If not, the parties are directed to explain their reasoning and address the construction of the term under the broadest reasonable interpretation standard.

D. Obviousness over Yu and Wang

Petitioner asserts that claims 1–6 and 18–22 of the ’675 patent would have been obvious over Yu and Wang. Pet. 35–75. For the reasons explained below, we are persuaded that Petitioner has demonstrated a reasonable likelihood of prevailing on this asserted ground.

1. Yu

Yu states that its “inventive principle may be considered as an extension to the known principle of envelope-tracking amplifiers, which determine an envelope signal of the radio frequency signal to be amplified, and which control the voltage supply to the power amplifier depending on said envelope signal.” Ex. 1004 ¶ 8. Figure 1, which is reproduced below, illustrates a power amplifier system according to Yu. Id. ¶ 33.

![Diagram of Yu's power amplifier system](image-url)
As Figure 1 shows, Yu’s power amplifier system includes signal processing unit SP, control unit 100, and power amplifier PA. *Id.* ¶¶ 33, 37–38. Input signals S1 and S2 are forwarded to signal processing unit SP, which transforms the input signals into radio frequency signal S_{RF}. *Id.* ¶ 37. Power amplifier PA is configured to amplify radio frequency signal S_{RF}, which is fed to an input of power amplifier PA. *Id.* ¶ 33. Power amplifier PA comprises power amplifier supply voltage module PA'. *Id.* ¶ 35. Power amplifier supply voltage module PA' is configured to modify supply voltage V_{sup}, which is applied to power amplifier PA. *Id.*

Control unit 100 is used to control the operation of power amplifier PA and its supply voltage module PA'. *Id.* ¶ 38. Control unit 100 has digital signal processing means DSP, which derive control signal CTRL based on input signals S1 and S2. *Id.* According to Yu, by deriving control signal CTRL in this way, “an improved supply voltage control for the power amplifier PA as compared to conventional envelope tracking systems may be obtained, especially in such cases, where more than one input signal S1, S2, . . . is to be processed to obtain said RF signal S_{RF}.” *Id.* ¶ 39.

2. *Wang*

Wang describes an envelope-tracking power amplifier system. Ex. 1005, 1244 (Title, Abstract). In Wang, the input signal is a complex baseband signal whose amplitude is $A = (I^2 + Q^2)^{1/2}$, where I and Q are the real and imaginary parts of the complex baseband signal. *Id.* at 1245, Fig. 3.
3. Analysis

Independent claim 1 is directed to an apparatus, and independent claim 18 is directed to a corresponding method. Both claims recite similar limitations, and Petitioner analyzes the claims together (see Pet. 35–60). Accordingly, our analysis regarding claim 1 also applies to claim 18.

a. “power tracker”

Claim 1 recites “a power tracker configured to determine a single power tracking signal based on a plurality of inphase (I) and quadrature (Q) components of a plurality of carrier aggregated transmit signals being sent simultaneously.” Claim 1 requires that “the power tracker receives the plurality of I and Q components . . . and generates the single power tracking signal based on a combination of the plurality of I and Q components.” Claim 1 also requires that “the plurality of carrier aggregated transmit signals comprise Orthogonal Frequency Division Multiplexing (OFDM) or Single Carrier Frequency Division Multiple Access (SC-FDMA) signals.”

As discussed above in the Claim Interpretation section, we construe “power tracker” to mean “component in a voltage generator that computes the power requirement.”

For these limitations, Petitioner relies on both Yu and Wang. In particular, Petitioner identifies Yu’s control unit 100 as a “power tracker,” Yu’s control signal CTRL as a “single power tracking signal,” and Yu’s input signals S1 and S2 as “carrier aggregated transmit signals.” Pet. 36, 39, 42. Petitioner asserts that control unit 100 is “in Yu’s voltage generation circuitry.” Id. at 37. To illustrate, Petitioner provides an annotated version of Figure 3 of Yu, which is reproduced below. Id. at 38.
Figure 3 of Yu depicts a signal flow diagram. Ex. 1004 ¶¶ 32, 57. Petitioner directs us to where Yu teaches that control unit 100 may comprise function blocks 104 and 106 as well as adder 108. Pet. 37–38 (citing Ex. 1004 ¶ 66); see also Ex. 1004, Fig. 1 (control unit 100), Fig. 3 (blocks 104, 106 and adder 108). The annotated figure highlights Yu’s blocks and adder in blue. See Pet. 38. Petitioner further directs us to where Yu teaches that blocks 104 and 106 receive input signals S1 and S2, and calculate the absolute values of those signals. Id. (citing Ex. 1004 ¶ 57). Figure 3 of Yu shows that adder 108 combines the absolute values of input signals S1 and S2, and then outputs control signal CTRL. Ex. 1004, Fig. 3; see also id. ¶ 57 (cited by Pet. 38). According to Petitioner, “the absolute value of an I/Q signal is equal to the magnitude of the signal, which is a proxy for the signal’s power, and the sum of the two signals’ magnitudes is a proxy for the power required to transmit the aggregated signals.” Pet. 48–49 (citing Ex. 1003 ¶ 107). As Petitioner points out, Yu teaches using control signal CTRL for modifying supply voltage V_sup, which is applied to power amplifier PA. Pet. 39; Ex. 1004 ¶¶ 35, 37.
Regarding Yu’s signals S1 and S2, Petitioner additionally directs us to where Yu teaches simultaneously processing the input signals. Pet. 42 (citing Ex. 1004 ¶ 15); see also Ex. 1004 ¶ 16 (“[B]oth input signals may simultaneously be processed by the digital signal processing means.”). Petitioner also directs us to another annotated version of Figure 3 of Yu, which is reproduced below. Pet. 43.

As discussed above, Figure 3 of Yu depicts a signal flow diagram. Ex. 1004 ¶¶ 32, 57. Petitioner asserts that signals S1 and S2 are upconverted to different intermediate frequencies, as shown in the red box. Pet. 43 (citing Ex. 1004 ¶ 48). Petitioner further asserts that the difference in frequencies is maintained when the signals are subsequently summed by adder a1, as shown in the blue box, and when they are upconverted again to different RF center frequencies, as shown in the yellow box. Id. Petitioner contends that the annotated portions of Figure 3 show that Yu’s signals S1 and S2 are transmitted on multiple carriers at the same time to increase the bandwidth for a user. Id. at 42–43. According to Petitioner, an ordinarily skilled artisan “would have understood Yu’s method of aggregating multiple signals
on different frequencies increases the bandwidth for a user, allowing more information to be transmitted per unit of time.” *Id.* at 44. Petitioner relies on the declaration testimony of Dr. Choi. *Id.* (citing Ex. 1003 ¶¶ 101–104).

Petitioner submits, however, “Yu does not expressly mention inphase (I) and quadrature (Q) components of the input signals, but [an ordinarily skilled artisan] would have understood that the input signals S1 and S2 are digital signals for wireless transmission that each would have such I and Q components.” Pet. 45. Petitioner directs us to where Yu describes input signals S1 and S2 as digital baseband signals, and contends that, “at the time Yu was published, the standard practice for RF communication systems processing digital signals was to use I/Q components.” *Id.* (citing Ex. 1004 ¶ 20). Petitioner relies on the declaration testimony of Dr. Choi. *Id.* (citing Ex. 1003 ¶ 105).

Alternatively, Petitioner points to Wang for teaching the recited I and Q components. *Id.* at 49. According to Petitioner, even if Yu does not disclose I and Q signals, “it still would have been obvious to use Wang’s I/Q signal processing with Yu’s power tracker.” *Id.* Petitioner directs us to where Wang teaches receiving a “complex baseband signal,” which Petitioner asserts “is understood to comprise I and Q components.” *Id.* at 49–50 (citing Ex. 1005, 1245, Fig. 3). Petitioner further draws our attention to Wang’s teaching that “[t]he amplitude is $A = (I^2 + Q^2)^{1/2}$, where I and Q are the real and imaginary parts of the complex baseband signal.” *Id.* at 50 (citing Ex. 1005, 1245). Petitioner contends that an ordinarily skilled artisan “would have been motivated to use Wang’s I/Q signal processing in Yu” because, “[if] a [person of ordinary skill in the art] had any doubt about what type of signaling to use, she would have looked to Wang, a reference in the
same field that provides these details.” *Id.* at 51–52. In addition, Petitioner contends that “[c]omplex input signals (with I and Q components) improve immunity to transmit signal noise, and allow the use of advanced (higher order) modulation techniques such as quadrature phase-shift keying (QPSK), which doubles the data rate by increasing the number of bits per symbol that can be transmitted within the same bandwidth, compared with a method such as binary phase-shift keying (BPSK).” *Id.* at 52 (citing Ex. 1021, 308).

Petitioner relies on the declaration testimony of Dr. Choi. *Id.* (citing Ex. 1003 ¶ 112).

Petitioner also points to Wang for teaching Orthogonal Frequency Division Multiplexing (OFDM) signals. *Id.* at 54 (citing Ex. 1005, 1244 (title), 1253). According to Petitioner, “Yu does not explicitly disclose which modulation technique to use for transmitting signals through the power amplifier,” and an ordinarily skilled artisan “would have looked to Wang, a reference in the same field to determine a modulation technique.” *Id.* at 54–55. In addition, Petitioner contends that “OFDM had many advantages, including the ability to adapt to degraded channel conditions without complex equalization filters, and robustness against various forms of interference.” *Id.* at 55–56 (citing Ex. 1022 ¶¶ 2–3). Petitioner relies on the declaration testimony of Dr. Choi. *Id.* (citing Ex. 1003 ¶ 118).

Based on the record before us, at this stage of the proceeding, we are persuaded that Petitioner has established sufficiently for purposes of this Decision that the combination of Yu and Wang teaches the recited “power tracker.” We also are persuaded that Petitioner’s proffered reasoning for modifying Yu to include Wang’s baseband signal (comprising an OFDM signal with I and Q components), namely, to provide a way to carry out Yu’s
signaling, is sufficient to support the legal conclusion of obviousness. See In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006) (“[T]here must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness.”).

b. “power supply generator”

Claim 1 further recites “a power supply generator configured to generate a single power supply voltage based on the single power tracking signal.” For this limitation, Petitioner identifies Yu’s power amplifier supply voltage module PA' as a “power supply generator,” and Yu’s supply voltage Vsup as a “single power supply voltage.” Pet. 57–58. To illustrate, Petitioner provides an annotated version of Figure 3 of Yu, which is reproduced below. Id. at 58.

As discussed above, Figure 3 of Yu depicts a signal flow diagram. Ex. 1004 ¶¶ 32, 57. Petitioner directs us to where Yu teaches using control signal CTRL (which Petitioner identifies as the “single power tracking signal”) to control the value of supply voltage Vsup via power amplifier supply voltage module PA'. Pet. 58 (citing Ex. 1004 ¶ 52); see also
Ex. 1004, Fig., 3; id. ¶ 57 ("[T]he supply voltage V_{sup} for the power amplifier PA is again determined depending on said control signal CTRL.") (cited by Pet. 58). The annotated figure shows power amplifier supply voltage module PA' (shown with blue shading) receiving control signal CTRL and outputting supply voltage V_{sup}. Based on the record before us, at this stage of the proceeding, we are persuaded that Petitioner has established sufficiently for purposes of this Decision that the combination of Yu and Wang teaches the recited “power supply generator.”

c. “power amplifier”

Lastly, claim 1 recites “a power amplifier configured to receive the single power supply voltage and the plurality of carrier aggregated transmit signals being sent simultaneously to produce a single output radio frequency (RF) signal.” For this limitation, Petitioner identifies Yu’s power amplifier as a “power amplifier.” Pet. 58–59. To illustrate, Petitioner provides an annotated version of Figure 3 of Yu, which is reproduced below. *Id.* at 59.
Figure 3 of Yu depicts a signal flow diagram. Ex. 1004 ¶¶ 32, 57. Referring to its annotated version of Figure 3, Petitioner contends that Yu teaches that power amplifier PA receives supply voltage V_{sup} (which Petitioner identifies as the “single power supply voltage”) from power amplifier supply voltage module PA' (shown with blue shading). Pet. 58–59. The annotated figure shows power amplifier PA (shown with pink shading) receiving supply voltage V_{sup}.

Petitioner further contends that Yu’s power amplifier PA also receives input signals S1 and S2 (which Petitioner identifies as the “plurality of carrier aggregated transmit signals”). Id. at 59. Referring still to its annotated version of Figure 3, Petitioner explains that Yu’s input signals S1 and S2 are fed into signal processing unit SP, which is outlined in purple, and are output to power amplifier PA, which is shown in pink. Id. Petitioner also explains that “the output of the SP block (S_{RF}) comprises the two input signals, at upconverted frequencies.” Id. at 60 (citing Ex. 1004 ¶ 41). In addition, Petitioner directs us to where Yu teaches that, “at an output of the power amplifier PA, an amplified radio frequency signal S_{RFa} is obtained.” Id. (citing Ex. 1004 ¶ 33); see also Ex. 1004, Fig. 1. We find that Yu’s signal S_{RFa} corresponds to the recited “single output radio frequency (RF) signal.”

Based on the record before us, at this stage of the proceeding, we are persuaded that Petitioner has established sufficiently for purposes of this Decision that the combination of Yu and Wang teaches the recited “power amplifier.”

Patent Owner does not respond to Petitioner’s arguments regarding claims 1 and 18. See generally Prelim. Resp. In view of the foregoing, we
determine that Petitioner has demonstrated a reasonable likelihood of prevailing on its assertion that independent claims 1 and 18 would have been obvious over Yu and Wang. Having reviewed Petitioner’s arguments asserting that dependent claims 2–6 and 19–22 would have been obvious over Yu and Wang (see Pet. 61–75), we also determine that Petitioner has demonstrated a reasonable likelihood of prevailing on its assertion as to these claims. Patent Owner does not respond to Petitioner’s arguments regarding claims 2–6 and 19–22. See generally Prelim. Resp.

IV. CONCLUSION

For the foregoing reasons, we are persuaded that Petitioner has demonstrated a reasonable likelihood that it will prevail in showing that claims 1–6 and 18–22 of the ’675 patent are unpatentable. We have not made a final determination, however, with respect to the patentability of these claims.

V. ORDER

For the reasons given, it is

ORDERED that inter partes review is instituted as to all challenged claims of the ’675 patent, namely, claims 1–6 and 18–22, based on the sole asserted ground: obviousness under 35 U.S.C. § 103 of claims 1–6 and 18–22 over Yu and Wang;

FURTHER ORDERED that no other grounds of unpatentability are authorized for an inter partes review as to any claim of the ’675 patent; and
IPR2018-01326
Patent 9,608,675 B2

FURTHER ORDERED that, pursuant to 35 U.S.C. § 314(c) and 37 C.F.R. § 42.4, notice is hereby given of the institution of a trial; the trial will commence on the entry date of this Decision.

For PETITIONER:
David Cavanaugh
Richard Goldenberg
Theodoros Konstantakopoulos
WILMER CUTLER PICKERING HALE AND DORR LLP
David.Cavanaugh@wilmerhale.com
Richard.Goldenberg@wilmerhale.com
Theodoros.Konstantakopoulos@wilmerhale.com

For PATENT OWNER:
Matthew Johnson
Joseph Sauer
David Cochran
David Maiorana
Richard Graham
Joshua Nightingale
JONES DAY
mwjohnson@jonesday.com
jmsauer@jonesday.com
dcochran@jonesday.com
dmaiorana@jonesday.com
ragraham@jonesday.com
jmnightingale@jonesday.com